УДК 621.922

АНАЛИЗ МЕТОДОВ РАСЧЕТА НА ПРОЧНОСТЬ ВЫСОКОСКОРОСТНЫХ ШЛИФОВАЛЬНЫХ КРУГОВ

Секачёв Андрей Фёдорович
Омский государственный технический университет

Аннотация
Проведен сравнительный анализ существующих методов расчета вращающихся дисков, выявлен наиболее подходящий для решения конкретной задачи.

Ключевые слова: высокоскоростные шлифовальные круги, методы расчета на прочность, скоростное шлифование


ANALYSIS METHODS FOR STRENGTH HIGH SPEED GRINDING WHEELS

Sekachev Andrei Fedorovich
Omsk State Technical University

Abstract
A comparative analysis of existing methods of calculating the rotating discs, identified the most suitable for a particular purpose.

Библиографическая ссылка на статью:
Секачёв А.Ф. Анализ методов расчета на прочность высокоскоростных шлифовальных кругов // Современная техника и технологии. 2014. № 6 [Электронный ресурс]. URL: http://technology.snauka.ru/2014/06/4077 (дата обращения: 04.10.2017).

Скоростное шлифование – шлифование с высокой линейной скоростью движения абразивного материала. Преимущества скоростного шлифования [1]:

  1. Повышение производительности по машинному времени
  2. Уменьшение износа и увеличение стойкости круга
  3. Высокое качество обработанной поверхности
  4. Возможность работать с повышенной продольной и поперечной подачей при соответствующем увеличении скорости вращения обрабатываемой детали.

Скоростное шлифование предъявляет особые требования к шлифовальному кругу. К числу которых относится, в первую очередь, прочность. Проблемы выбора материала, с достаточным сопротивлением его на разрыв от действия центробежных сил, возникают уже при скоростях до 50-70 м/с. Существуют конструкции, выдерживающие до 160 м/с.

Для достижения скорости 350 м/с и более была предложена специальная конструкция – шлифовальный круг для алмазно-абразивной обработки состоящий из металлического корпуса с отверстиями, в которые устанавливаются цилиндрические шлифующие сегменты [2].

Основные параметры круга:

- максимальный диаметр круга до 250 мм;

- максимальная ширина до 40 мм;

- максимальная рабочая скорость обработки до 400 м/с;

- количество обрабатывающих элементов – 16 штук;

Шлифовальный круг состоит из корпуса и обрабатывающих элементов. Материал корпуса – 13Х11Н2В2МФ-Ш. Свойства материала:

Е=196200 МПа  – модуль упругости;

μ=0,3 – коэффициент Пуассона;

σв=1079МПа – предел прочности;

σ0,2= 932МПа – предел текучести;

δ=1,5% – относительное удлинение;

ρ=7800 к г/м3 – плотность.

Необходимо определить надежность, такой конструкции. В основе теории расчета дисков лежат два допущения:

  1. Радиальные напряжения  и окружные напряжения  постоянны по толщине диска.
  2. В площадках, нормаль к которым направлена параллельно оси вращения, напряжения отсутствуют .

Эти два допущения не вносят существенных  погрешностей в расчет, если толщина диска составляет не больше 30..40% от его внешнего радиуса. Из допущений и обязательного условия для этой теории осевой симметрии следует, что по граням элемента диска касательные напряжения отсутствуют.

Если первое допущение упрощает расчет и в оконечном счете отражается лишь на точности полученного результата (приемлемая точность), то второе ограничивает возможности применения полученных методик для дисков произвольного профиля.

Для диска постоянной толщины радиальные и окружные напряжения определяются по формулам [3]:

где     – плотность материала;  – угловая скорость;  – радиус расчетного сечения;  – радиус центрального отверстия;  – радиус периферии

При параметрах разрабатываемого высокоскоростного шлифовального круга максимальные радиальные и окружные напряжения в центре будут .

Существует  большое количество различных методов определения напряжений в диске произвольного профиля. В основном эти методы подразделяются на три группы:

  1. Методы разбивки на участки
  2. Методы конечных разностей
  3. Интегральные методы

В методах первой группы диск заменяют в пределах небольших участков диском другого профиля, для которого известно точное решение.

В методах второй группы используют линейную аппроксимацию функций на отдельных участках диска.

В методах третьей группы применяют способ последовательных приближений (методы Р. С. Кинасошвили, Томпсона, И. Ш. Неймана и И.С. Королева).

Главное, что все эти методы являются по своей сути численными и их использование не даст более точных  результатов чем МКЭ в ANSYS, в силу того, что в них заложены допущения искажающие физическую модель.

В методе Кинасошвили, к примеру, есть коэффициент выбирающийся из диапазона полученного из практики расчетов. Его метод примечателен лишь тем, что позволяет получить сравнительно более быстрый ответ, за счет меньшего числа операций. Томпсон в своей работе составляет интегральное уравнение и не указывает на пути его решения.

Стоит также отметить, что эти методы не позволяют определить местные напряжения, которые важно учитывать для циклического нагружения.

В работе [4] была создана параметрическая расчетная модель на базе ANSYS. Такой подход применим лишь конструкциям относительно простой геометрической формы.


Библиографический список
  1. Семенченко И.И., Матюшин В.М., Сахаров Г.Н. Проектирование металлорежущих инструментов. Учебное пособие под редакцией И.И. Семенченко. Государственное научно-техническое
  2. Реченко, Д.С. Шлифовальный круг для алмазно-абразивной обработки. / Д.С. Реченко, Ю.Р. Нуртдинов, А.Ю. Попов ; Пат. 55665 РФ, МПК B24D 17/00. – № 2006111080/22; Заявлено 05.04.06; Опубл. 27.08.06. Бюл. № 24. – 2 с.: ил.
  3. Биргер И. А., Мавлютов Р. Р. Сопротивление материалов: Учебное пособие. – М.: Наука. Гл. ред. физ.-мат. лит., 1986. – 560с.
  4. Ласточкин Д.А., Скуратов Д.Л. Прочность шлифовальных кругов// Вестник Самарского государственного аэрокосмического университета им. академика С.П. Королёва (национального исследовательского университета). 2006. № 2-1. С. 139-143.


Все статьи автора «Seka4ev_Andrei»


© Если вы обнаружили нарушение авторских или смежных прав, пожалуйста, незамедлительно сообщите нам об этом по электронной почте или через форму обратной связи.

Связь с автором (комментарии/рецензии к статье)

Оставить комментарий

Вы должны авторизоваться, чтобы оставить комментарий.

Если Вы еще не зарегистрированы на сайте, то Вам необходимо зарегистрироваться: