УДК 519.876.5

МОДЕЛИРОВАНИЕ КАК СРЕДСТВО ПОЛУЧЕНИЯ ПРОГНОЗОВ В СИСТЕМАХ ПОДДЕРЖКИ ПРИНЯТИЯ РЕШЕНИЙ

Тиханычев Олег Васильевич
Академия военных наук
кандидат технических наук, профессор

Аннотация
Рассмотрены вопросы применения математического моделирования в системах поддержки принятия решений. Проанализированы основные направления развития систем поддержки принятия решений, в первую очередь, в части применения в их составе средств прогнозирования.

Ключевые слова: автоматизация управления, математическое моделирование, поддержка принятия решений, прогнозирование.


MODELING AS A MAJOR PREDICTION MEANS IN DECISION MAKING SUPPORT SYSTEMS

Tikhanychev Oleg Vasilevich
Academy of Military Sciences
Candidate of Technical Sciences, Professor

Abstract
The paper addresses the application of mathematical modeling in decision making support systems. The new work analyses the main trends of decision making support systems, in the first place, in terms of application of prediction tools as part of such systems.

Keywords: control automation, decision support, mathematical modeling, prediction


Библиографическая ссылка на статью:
Тиханычев О.В. Modeling as a major prediction means in decision making support systems // Современная техника и технологии. 2016. № 10 [Электронный ресурс]. URL: http://technology.snauka.ru/2016/10/10540 (дата обращения: 26.05.2017).

Management theory and practice often uses ‘a standard management cycle’ concept. A standard management cycle includes a number of main stages: goal setting (or verification of a task set), situation evaluation, decision making, planning, targets setting and control of their implementation [1,2]. Any DMSS implements this very management cycle, providing decision making support at all stages.

An integral part of any management cycle is predicting the consequences of implementing the decisions made. To improve the reliability of the forecasts made at different times, different mathematical tools have been used, each of which has certain advantages and disadvantages, when applied in different situations and within certain limits.

These methods are usually divided into two basic groups of predictive estimation methods: intuitive (expert) methods dealing with the subjective judgements, and formal methods using calculation methods and mathematical models. These models are implemented through application of various mathematical tools: starting with the expert assessment methods and up to complex mathematical models [3,4,5] implemented in factual approaches (Fig. 1).

Fig 1. Forecasting methods

As noted previously, each of the methods in Figure 1 has its limits to applicability with their own advantages and disadvantages.

Expert methods allow prediction in non-algorithmic situations, but they are less suited to automation and have no such good operational efficiency. Factual methods based on time series models are simpler and more effective, but can give serious errors in case of an abrupt change of parameters, especially if these changes were not previously known. Factual methods based on problem domain models and logical and probabilistic models provide a detailed and fairly accurate prediction, but they are demanding of computing resources and less effective, especially in terms of data input.

Selecting a certain prediction tool in DMSS is determined by the conditions of implementing a certain management cycle and specific features of each prediction method [6,7,8].

Application of prediction tools in automated DMSS that ensure management of complex man-machine systems has certain features [9,10,11]:

- high cost of error decisions that require a high prediction accuracy;

- automation of initial data collection, their processing, formation of aggregated output model data significantly reduces the respective requirements for the system components, including mathematical models [12];

- prediction efficiency shall meet the requirements for the duration of management cycle, which in its turn is determined by the responsiveness of the controlled system [13,14];

- DMSS is usually designed for addressing ill-defined problems [15].

In order to obtain acceptability assessment, these features are associated to the characteristics of certain prediction methods. The use of expert approaches requires involvement of a representative expert group for each specific problem, while this can take quite a long time. Reducing the number of experts impairs the accuracy of prediction. Moreover, it is theoretically possible, when no experts in a specific problem can be involved in the process, the work of the whole DMSS prediction subsystem can be wiped out. These drawbacks of the expert approach reduce the possibility of their use in the automated DMSS.

At the same time, the main shortcomings of mathematical models can be fended off due to their diversity, allowing the user to select the type of a model for a specific task, as well as use the automation software and equipment to improve the efficiency of data input and analysis of simulation results. Herewith, the accuracy of simulation is generally not impaired, ensuring prediction validity while maintaining the efficiency of its obtaining. Working with non-algorithmic problems with the use of models in automated DMSS has no special problems, as automated systems by definition handle the formal data, even when describing non-algorithmic situations [16].

Thus, based on the analysis of the requirements for prediction means in DMSS and considering the specific features of prediction methods [17,18], it is appropriate to apply mathematical modeling [19,20,21] as one of the most reliable and efficient prediction tool to predict the behavior of complex systems under automated control.


References
  1. West M., Harrison J. Bayesian Forecasting and Dynamic Models. Inc. Springer-Verlag New York, 1997 – 680 p.
  2. Zhang G., Lu J., Gao Y. Multi-Level Decision Making: Models, Methods and Applications. Springer, 2015. — 396 p.
  3. Vypasnyak V.I., Guralnik A.M., Tikhanychev O.V. Combat Simulation: Past, Present and Future // Military  Thought. Vol. 23 Number 3, 2014, p.30-41.
  4. Tikhanychev O.V., Kumykov A.A., Kalinovsky D.B. Measuring Attainable Destruction of the Enemy by Mathematical Modeling  // Military Thought. Vol.23 Number 4, 2014, p.71-78.
  5. Bruce W.Fowler De Physical Belly / In Introduction to Lanchestrial Attrition Mechanic, DMSTTIAC IIT Re-search Institute. Part I-II, 1996
  6. General Dynamics. C4 Systems [электронный ресурс] – URL: http://www.gdc4s.com
  7. Robert.H.Kewley, Mark.J.Embrechts. A Multiagent System for Tactical  Control of Automated Forces // The International C2 Journal, Vol2, No2, 2009.
  8. Tikhanychev O.V. Decision-Making Support Systems: Prospects for Troops Control Automation // Military  Thought. Vol. 21 Number 3, 2012, p.74-83.
  9. Tikhanychev O.V., Vypasnyak V.I., Guralnik A.M. A Decision-Making Support System as a Virtual HQ // Military Thought. Vol.24 Number 1, 2015, p.129-136.
  10. Schreer B. Die Transformation der US-Streitkräfte im Lichte des Irakkriegs. Berlin. 2003.
  11. Steven R. Bishop and Helen Susannah Moat speak about FuturICT – The Billion Europe Project: Leveraging New Technology for Social Advancement. April 18, 2012. Retrieved July 4, 2012.
  12. Tikhanychev O.V., Sayapin O.V. Rapid Predictions of Situation Development make for Successful Troop Control // Military Thought. Vol.24 Number 2, 2015, p.100-106.
  13. Anthony, Sebastian (December 6, 2011). Living Earth Simulator will simulate the entire world // Extreme Tech. Retrieved April 5, 2012.
  14. Best Practices for Development of Models and Simulations – Final Report. Johns Hopkins University – Applied Physics Laboratory. June 2010.
  15. Tikhanychev O.V. Methodology of formalization of Phenomena under Analysis as a potential Problem of information-oriented Societe // Paradigmata poznani. 2016. № 2. С. 17-20.
  16. Tikhanychev O.V., Tikhanycheva E.O. The Model of interethnic Interaction from the Taking into Account State Borders // Society, Culture, Personality in Modern World. Materials of the VI international scientific conference on February 16–17, 2016. С. 54-56.
  17. Tikhanychev O.V., Bazunov S.R., Rubtsov K.V. et al. Information-analytical system of planning of fire damage to enemy, has identification module whose information inlet is provided to support address of selected group of troops in database of server of main portion. Patent RU 117664 U1 on 09.12.2011.
  18. Tikhanychev O.V., Vypasnyak V.I. Support system for making solutions for fire damage caused by enemy group, has server including database with output connected to synchronizing inlet of control unit, where output of database is connected to another inlet of control unit. Patent RU 117665 U1 on 09.12.2011.
  19. Abramova M.A., Kostyuk V.G., Goncharova G.S. Modeling in Studying the Accultural Strategies of Youth // Indian Journal of Science and Technology. 2016. Т. 9. № 20. С. 94481.
  20. Mokhov E.A. Situacionny centr Soveta Federacii: konceptualnye podkhody k ego sozdaniyu // Analiticheskiy vestnik Soveta Federacii RF. – 2011. – № 23 (435).   URL:http://www.budgetrf.ru/Publications/Magazines/VestnikSF/2011/VSF_NEW201110261257/VSF_NEW201110261257_p_003.htm
  21. Tankov S.F. Sostoyanie rabot po sozdaniyu i funkcionirovaniuy situacionnykh centrov organov gosudarstvennoy vlasti Rossiyskoy Federacii // Analiticheskiy vestnik Soveta Federacii RF. – 2011. – № 23 (435). URL: http://www.budgetrf.ru/Publications/Magazines/VestnikSF/2011/VSF_NEW201110261257/VSF_NEW201110261257_p_005.htm

 



Все статьи автора «Oberst»


© Если вы обнаружили нарушение авторских или смежных прав, пожалуйста, незамедлительно сообщите нам об этом по электронной почте или через форму обратной связи.

Связь с автором (комментарии/рецензии к статье)

Оставить комментарий

Вы должны авторизоваться, чтобы оставить комментарий.

Если Вы еще не зарегистрированы на сайте, то Вам необходимо зарегистрироваться: