Проблема энергодефицита для регионов Российской федерации стоит довольно остро, так по данным РИА в 2015 году из 72 регионов Российской Федерации 50 регионов являются энергодефицитными, общий дефицит электроэнергии составил 44332,9 миллионов кВт*ч [1]. Дефицит электроэнергии в Вологодской области в 2015 году составил 2970,6 миллионов кВт*ч, определив положение региона в нижней части таблиц энергообеспеченности.
Наиболее проблемной отраслью народного хозяйства сточки зрения обеспеченностью электроэнергией является сельскохозяйственное производство, качество энергии поставляемой предприятиям агропромышленного комплекса по результатам ряда исследований [2] находится на низком уровне.
Одним из вариантов устранения дефицита электроэенергии для сельскохозяйственных предприятий является выработка собственной электроэнергии с использованием стационарных электростанций способных работать как на традиционном моторном топливе, так и на альтернативных моторных топливах [3, 4]. Преимуществом большинства альтернативных моторных топлив является то, что они получаются из возобновляемых источников энергии, а в некоторых случаях практически из отходов. В сельскохозяйственном производстве источником альтернативных моторных топлив могут послужить отходы различных производств агропромышленного предприятия: отходы животноводческих комплексов которые можно использовать для выработки биогаза, отходы растениеводства солома, полова и т.д. и отходы деревопереработки, которые можно использовать для получения генераторного газа.
Наиболее часто встречающийся в настоящее время тип газогенераторных установок – газогенератор, работающий совместно с электростанцией (рисунок 1). Это обусловлено тем, что стационарно работающий газогенератор, позволяет не только утилизировать отходы производства, получать тепловую энергию, но и при этом вырабатывать электроэнергию. Однако стоит отметить, что если целью работы газогенератора является производство электроэнергии, то КПД процесса не очень высок – только каждое пятое полено можно преобразовать в электроэнергию, а четыре полена – это побочный продукт работы – тепло.
Рисунок 1. Газогенераторная твердотопливная электростанция.
1- газопоршневая электростанция, 2- фильтр-влагоотделитель, 3- фильтр тонкой очистки, 4- бойлер (охладитель газа), 5- вентилятор, 6- газогенератор
Учитывая большое количество тепловой энергии, вырабатываемой газогенератором, в сельскохозяйственном производстве такие установки можно использовать в животноводческих комплексах, обеспечивая освещение помещений и подогрев воды на поение животных и технологические нужды.
Так температура генераторного газа может достигать 600ºС на выходе из газогенератора [5], используя теплообменник 2 (рисунок 2), температура генераторного газа понижается до температуры необходимой для нормального процесса работы двигателя внутреннего сгорания – 40ºС [5]. Тепло, полученное в теплообменнике можно использовать на сушку топлива для газогенератора, или на поение животных, так поение коров водой, подогретой до +10…+16ºС, позволяет им сэкономить энергию на подогрев воды и направить ее на выработку молока. Особенно важно теплое питье для коров после отела, им в течение 5 суток дают теплую, подогретую до 25-29ºС воду [6].
Дополнительным источником тепла в энергетической установке могут служить отработавшие газы двигателя внутреннего сгорания электростанции 4 (рисунок 2), температура которых может достигать для карбюраторных двигателей 750 – 850К и для дизелей 600 – 700К [7]. Воду, подогретую выхлопными газами можно использовать на технологические нужды и мытье оборудования.
Рисунок 2. Схема энергетической теплообменной установки.
1 – газогенератор; 2 – теплообменники; 3 – система очистки генераторного газа; 4 – электростанция.
Аналогичная схема использования газогенераторной установки подразумевает использование тепла, выделяемого газогенератором для предварительной сушки топлива, до необходимой влажности 25% [5]
Усовершенствование конструкций газогенераторов [8, 9] с целью использование генераторного газа в качестве топлива улучшит стабильность работы двигателей. А использование генераторного газа, получаемого при утилизации отходов сельскохозяйственного производства [10] совместно с выработкой электрической и тепловой энергии, позволит повысить энергоэффективность получения продукции предприятиями агропромышленного комплекса.
Библиографический список
- Риарейтинг / [Электронный ресурс]. – Режим доступа: URL: http://riarating.ru/regions_rankings/20160309/630013825.html (дата обращения:10. 01.2017)
- Зазуля, А.Н. Использование биогазовых установок в электроснабжении сельскохозяйственных предприятий Тамбовской области/А.Н. Зазуля, А.В. Кобелев, С.В. Кочергин, Н.А. Хребтов//Наука в центральной России. -2013. -№ 4. -С. 66-71.
- Калинин, В.Ф. О возможностях использования альтернативных источников энергии / В.Ф. Калинин, К.А. Набатов, А.М. Шувалов, А.В. Кобелев // Вестник ТГТУ. -2003. -№3 т.9. -С. 450-456.
- Кобелев, А.В. Повышение эффективности систем электроснабжения с использованием возобновляемых источников энергии: дис.. канд. тех. наук: 05.09.03. -Тамбов, -2004. -145 с.
- Газогенераторные энергетические установки / [Электронный ресурс]. – Режим доступа: URL: http://ves-ptp-spb.ru/gazogeneratornye_energet (дата обращения: 15.01.2017)
- Как влияет питьевая вода на продуктивность молочных коров? / [Электронный ресурс]. – Режим доступа: URL: http://www.kleverkirov.ru/index.php?option=com_content&Itemid=19&catid=37&id=916&lang=ru&view=article (дата обращения: 20.01.2017)
- Шумский, Е. Г. Общая теплотехника : учеб. / Е. Г. Шумский, Б. А. Богдасаров. – М. : Машгиз, 1961. – 460 с.
- Патент №168538 Российская Федерация, МПК C10J3/20(2006.01). Газогенератор [Текст] / А.Л. Бирюков, Ф.А. Киприянов// № 2016113671; заявл.08.04.2016; опубл. 08.02.2017 Бюл. № 4 – 7 с.
- Патент №167119 Российская Федерация, МПК C10J3/20(2006.01). Газогенератор [Текст] / А.Л. Бирюков, Ф.А. Киприянов// №2016113670; заявл. 08.04.2016; опубл. 20.12.2016 Бюл. № 35 – 2 с.
- Киприянов Ф.А. Перспективы использования генераторного газа//Актуальные научные исследования в условиях вызовов XXI века: Материалы Международной научно-практической конференции. 2016. С. 330 -331.